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ABSTRACT

In gasdynamic systems, information travels in one direction

for supersonic flow and in both directions for subsonic flow. A

shock occurs at the transition from supersonic to subsonic flow.

Thus, to simulate these systems, any simulation method implemented

for the quasi-one-dimensional Euler equations must have the ability

to capture the shock. In this paper, a technique combining both

backward and central differencing is presented. The equations are

subsequently linearized about an operating point and formulated

into a linear state space model. After proper implementation of

the boundary conditions, the model order is reduced from 123 to

less than i0 using the Schur method of balancing. Simulation

results comparing frequency and step responses of the reduced order

models and the original system model are presented. This paper

essentially follows the approach of Chicatelli, 1990, and

Chicatelli and Hartley, 1990, while using an alternative for the

flux splitting method.

INTRODUCTION

The digital simulation of gasdynamic systems is typically

complex and computer intensive. Furthermore, gasdynamic systems

have general characteristics which must be accounted for when

choosing a simulation method. One major characteristic to be

considered is that in gasdynamic systems, there are regions of

supersonic flow and subsonic flow. In a one-dimensional problem,

regions of supersonic flow will exhibit travelling of information

in one direction. On the other hand, regions of subsonic flow will

have information travelling in two opposing directions. The

discontinuity occurring at this transition from supersonic flow to

subsonic flow is called a shock. A shock generally appears in any

physical system where there is a substantial transfer of energy

from one form to another. In these systems, shock position is

usually the desired control variable because of its physical

significance. Consequently, any simulation method used must have

the ability to accurately track the shock position. This specific

consideration will be discussed later in the paper, but first

consider a general discussion on the simulation of gasdynamic

systems.



A popular simulation approach for partial differential
equations is the finite differencing technique. However, spatial
differencing on distributed partial differential equations requires
some general knowledge of system behavior. Moreover, the effects
of the differencing method on the simulation must be considered.
Since forward or backward differencing allows information to flow
in only one direction, either method leads to numerical
instabilities for systems containing subsonic flow. Thus, forward
and backward differencing are, by themselves, not suitable
simulation techniques for gasdynamic systems. On the other hand,
although central differencing permits the flow of information in
both directions it typically leads to unstable difference equations
and/or simulations corrupted with high frequency spurious noise
[3]. The foregoing suggests that, to simulate gasdynamic systems,
one may consider a method which combines forward or backward
differencing with central differencing. However, it should be born
in mind that, assumptions about information flow direction must be
made.

The simulation method implemented in this paper is essentially
a modification of a method developed by Courant, Isaacson, and Rees
[4] and Roache [7]. This method considers the actual physics of
the gasdynamic process when performing the spatial differencing.
Mass flow and energy are assumed to propagate signals downstream.
Therefore, only backward differencing is used in these two
equations. Any term associated with system pressure is assumed to
communicate information in both directions. Thus, pressure terms
are estimated using central differencing. It turns out that this
method has the ability to capture the shock, remain stable, and
provide accurate results [3]. Since it performs the differencing
based on fundamental physics, the method is referred to as physical
lumping. This technique is applied to the general quasi-one-
dimensional gasdynamic equations for density, mass flow, and
energy. Once this spatial differencing scheme is applied, the
gasdynamic equations are subsequently linearized about a steady
state operating point.

The specific system under consideration is the NASA Lewis 40-
60 Inlet [8]. This physical system may be represented by 41
spatial lumps approximately 0.1427 feet apart. Considering that
there are three governing equations for each spatial lump, the
overall system is 123rd order. Since the dynamics at each lump are
only a function of the previous lump and the next lump, the
structure of the model lends itself to a tridiagonal state space
formulation. This high order state space representation is then
reduced using the Schur method of balancing [5].

The Schur method of balancing and its use in model reduction
were first presented in [5]. In this truncation based model
reduction method, the first concern is the size of the
characteristic Hankel singular values (HSV). Typically, any large
break in the HSVs, usually taken as a i0 to 1 ratio, is a feasible
position to truncate the model in balanced coordinates. The
resulting reduced order model (ROM) must then be studied to ensure



that all desired characteristics of the linear full order model
(LFOM) and the nonlinear full order model (NLFOM) are retained. In
this paper, 4th and 6th order linear ROMsare calculated. The step
responses and frequency responses of these ROMs are considered.

NASA Lewis 40-60 Inlet

The starting point for the analysis begins with the three
governing nonlinearquasi-one-dimensional gasdynamic equations for
continuity, conservation of momentum, and conservation of energy.
These equations, referred to as the Euler equations, are

Continuity:

a(pA) + a(puA) _M. (1)
at ax

Conservation of Momentum:

cg(puA) + a[A(P+pu2)]
at ax

and Conservation of Energy:

_paA +F s
ax

(2)

a(EA) + a[Au(E+P)] = _p @_AA + Qs (3)
at ax at

with

P=0.4E- (4)

The major variables of concern are

p _ density

u m velocity

p m pressure

E m energy
A m area.

The velocity may be expressed in terms of the mass flow and the

density as

m
u = --. (5)

p

Furthermore, the general gasdynamic equations may be written in

terms of p m, E, and P. The terms Ms, F_, and Qs are the input

source terms. For the specific problem consldered here, Inputs

will be applied at the boundary conditions. After this

simplification, the system equations may then be expressed by
finite difference terms.



The spatial differencing method implemented in this paper
applies backward differencing on the mass flow and energy terms
since they are considered to flow in only one direction. On the
other hand, central differencing is applied to any pressure-related
terms since they are considered to propagate in both directions.
Thus, the equations for density, mass flow, and energy are first
discretized in space as

1 [ Aim_ Ai-lm_-1

[rhi =
Pl Pi-_

F'i = 1 Aim±Ei _ Ai-_mi-_Ei-_
HA± Pi Pi-I

2 iC i-IAi-l-Pi-iAi-iJAiLdxJl
i[Ai.lmi.IPi 1Ai-lm -iPi-1 I 101.2HAi Pi+1 @i-i

(6)

The NASA Lewis 40-60 inlet may be represented by 41 spatial lumps

with a spatial step, H = 0.1427 feet as in [i]. This in turn

results in a 123rd order model. It should be noted that this

specific method uses Euler's method to approximate the time

derivatives. To expedite the analysis process, and to keep from

adding a dynamic equation for pressure, the system equations must

be further simplified.

All of the pressure variables shown in (6) may be expressed in

terms of the relationship shown in (4). Subsequently, (6) may then

be rewritten as follows

F'i =

_ Ai-lmi-i mi

HA i H

-__ 0.2Ai_iEi_ I 0. IA i imi 12 0.2Ai.iEi. Ih i = n_i2 + Ai-lm_-1 + - - _ _
HP i HAiPi-I HA i HAiPi_ 1 HA i

+ 0'iAi+imi+12 + (0'4El O._2m2][dA]
HAiPi.l Ai PiAi ]L C_Ji

1.2Ai_Imi_iEi_1 miE i 0. IAi_im_. I 0.2Ai+imi+iEi+ I 0. iAi+im_+ I
-- +

HAipi -i HPi HA ip21_1 HAi P i+I HAl pi +12

(7)

Equation (7) can now be implemented as a shock capturing

computational fluid dynamics (CFD) scheme for the quasi-one-

dimensional Euler equations. The resulting model can be used for

control evaluation in a real-time simulation and thus for control

system design.

The next step is to linearize equation (7) about a steady

state operating point in order to develop a model for controller

design. However, it is necessary to first consider the structural

properties of (7). Recall that the 40-60 inlet is comprised of 41



spatial lumps with three governing equations for each lump, namely,
density, mass flow, and energy. The structure of these equations
enables the construction of a large linear state space model.
Suppose a state vector is defined as

x T = [Pl ml El _ @2 m2 E2 i . . . _ P41 m41 E41]. (8)

Following this definition of x, the system may be put into the

general state space form

=Ax + Bu (9)
y = Cx.

Since the dynamics of the system are a function of the present

state and the states to the left and right, the A matrix has a

tridiagonal form and may be constructed as

A

J1 Q2 0 0 . . . 0

PI J2 Q3 0 0

0 P2 J3 Q4 0

0 0 ' ' Pn-2 Jn-i Qn

0 0 0 . . ' Pn-1 Jn

(10)

Notice that the first and last rows do not include a Pi and Qi

term respectively. The effect of these matrices must be considered

when applying any boundary conditions to the system as will be seen

later in the paper. Taken directly as the small perturbation

linearization of the discrete space equations given in (7), the Pi,

Ji, and Qi matrices shown in (i0) are

di =

0

re_i+o-2m r 1

miEi

1
w__

H

-2m± 0.4mi[_]HPl PiAi i

E i
m

Hp_

0

m i

Hp_

(11)



Pi =

0

Aim_ 0.1Aim_
-- +

0.2Aim _ 1.2AimiE i

A i

HAl+ 1

1.8Aim i

HAi+l_i

1.2AiE i_ 0.3Aim _

HAi.lPi HAi+ip _

0.2A i

HAi+ 1

1.2Aim i

HAi.iPi

(12)

Qi =

r0

0. IAim _

0.2Aim _ 0.2AimiE i
+

HAi HAi_Ip 

0.2Aim i

HAI-_Pi

0.2AlE i 0.3Aim _
+

HAi-lPi HAi_Ip _

,

0.2A i

HAi-I

0.2Aim i

HAi-I P i

(13)

The measured output is the change in pressure, 6P, directly

downstream of the shock. The position of the shock is directly

related to the change in pressure at this position [6]. As the

steady state shock position in the 40-60 inlet is located around

the 24th lump, the C matrix for the output 6P may be constructed as

0.2m#4 -0.4m24 ]
C = 0 0 0 O.4 0 0 . (14)

p2 P2424

The input to the system will be a change in pressure at the

farthest point downstream corresponding to the last physical lump.

This input is introduced into the system model by the B matrix.

However, the effects of the boundary conditions should be

considered first. Boundary conditions for this problem must take

care of introducing a reflection in pressure information at the

last lump. Consequently, the last row of the A matrix must be

changed. The last row of the small perturbation model, with

corresponding subscripts for elements in P and Q, is given as

5F'41 = (P40)3,16P40 + (P40)3,28m40 + (P40)_,36E40

+ (J41)3.16P41 + (J41)3,28m41 + (J41)3,36E41 ,
(15)

where

6E41 - 6P41 0"5m_16p41 + m4---!_m41. (16)

0.4 P_I P41

The last row in the (J41)row,co[ submatrix, with designated subscripts,

must be modified to creafe a new (J41)row,cot submatrix, namely



(J41) 3,1 = (J41) 3,1 - (J41) 3,3 p_

(m41_

(J41)3,3= O.

(17)

Under further simplification, the equations in (17) become

O. 5m21 )(34_) 3,1 = (J41) 3,1 +
Hp_I

(J41)3,3= O.

(18)

These modifications must be made in the last row of the A matrix

for proper implementation of the boundary conditions.

Since 6P41 is the input point, the 6P41 term of the 6E41

equation in (ii) may be absorbed into the B matrix, viz.

B T = [0 0 . . 0 -2"5m41 (19)

[ HP41

The nonzero term in (19) is simply the coefficient on 6P given in

(16) and multiplied by (J41)3.3" The state space model for the
system is now completely defineu. In the next section, the state

space model is balanced, using the Schur method of balancing, and

truncated. The resulting ROMs are then studied using the step and

frequency responses.

Model Reduction

Obtaining an accurate reduced order model is very important

for controller design, particularly for reducing the complexity of

the resulting controller. No reliable techniques are currently

available for reducing the order of the original nonlinear system

while preserving large perturbation information. However, many

methods are available for reducing the order of linear systems.

Among these methods, the Schur method is a robust and well

conditioned method to reduce the large state space models of

gasdynamic systems. A reduced order model may be found directly by

using projections defined by the left and right eigenspaces of the

large eigenvalues of the product of the observability and

controllability Grammians. Since the full order models are

typically numerically ill-conditioned, some type of scaling is

performed prior to model order reduction. A first consideration in

choosing the ROM order is to view the largest HSVs of the system.



An abbreviated table of the 13 largest HSVs of the linear
model of the NASA Lewis 40-60 inlet is shown in Figure i.

order HSV ratio

1
2
3
4
5
6
7
8
9

i0
ii
12
13

1.0603e+01
4.6175e+00
1.9535e+00
1.0341e+00
4.9687e-01
2.6303e-01
9.2066e-02
9.1363e-02
2.1703e-02
1.1679e-02
1.6844e-03
1.5313e-03
1.5189e-04

2.2962
2.3637
1.8891
2.0812
1.8890
2.8570
1.0077
4.2097
1.2926
6.9336
I.i000

10.0816

Figure i. - Largest Hankel Singular Values of the NASA
Lewis 40-60 Linear Inlet Model.

The ratio column in Figure 1 is simply the ratio of the HSV to the

left of the number divided by the HSV above that number. A ROM is

typically found by truncating the LFOM where there is a I0 to 1

break in the HSVs. At first glance the best break appears to be

for a 12th order model. Other possible considerations include 8th

and 10th order ROMs. It turns out that all of these ROMs trace the

step response so close that they are not discernable on the graph.

Subsequently, two other ROMs were calculated of order 4 and 6.

Since the output is known to have a delay in its time response, the

order of the model cannot be reduced much more than this. Even the

4th order model exhibits some oscillatory behavior when trying to

represent the time delay. The step response for these two ROMs is

shown in Figure 2. Also included in figure 2 are the step

responses for the LFOM and the NLFOM. The 6th order model traces

the actual LFOM response very close. As mentioned previously, the

4th order response is somewhat oscillatory during the time delay

but still gives a reasonable approximation to the actual step

response. For completeness, the frequency response is shown in

Figure 3.
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From Figure 3, it can be seen that the original linear system is

very low pass. Notice that the frequency responses separate only

when the system starts to attenuate. If higher order ROMs are

considered, the only effect on the frequency response is that more

roll-off is preserved by keeping more poles. Overall, the accuracy

of the ROMs appear to be acceptable considering the amount of order

reduction attempted. ROM4 is shown in Figure 4 while ROM6 is shown

in Figure 5.

-40.41 192.08 -75.47 82.82

-192.08 -167.01 477.25 -188.12

-75.47 -477.25 -268.24 953.20

-82.82 -188.13 -953.20 -354.37

29.27 -39.27 32.37 -27.07

-29.27

-39.27

-32.37

-27.07

0.00

H(s) =

3.70e+2s 3 - 1.18e+6s 2 + 1.74e+9s - 1.03e+12

s 4 + 8.30e+2s 3 + 1.37e+6s 2 + 4.81e+8s + 7.51e+i0

Figure 4. - 4th order reduced order model for the
NASA Lewis 40-60 Inlet

-40.41 192.09 -75.48 82.82

-192.09 -167.02 477.26 -188.13

-75.48 -477.26 -268.25 953.20

-82.82 -188.13 -953.20 -354.37

-60.48 -218.56 -302.97 -1155.66

-47.79 -135.84 -323.28

-60.48 47.79

218.56 -135.84

-302.97 323.28

1155.66 -352.32

-529.20 1655.41

-352.32 -1655.41 -541.70

-29.27

-39.27

-32.37

-27.07

-22.93

-16.88

29.27 -39.27 32.37 -27.07 22.93 -16.88 0.00

H(s) =

1.29e+2s 5 - 9.44e+5s 4 + 3.59e+9s 3 - 8.12e+12s 2

+ 1.06e+16s - 6.36e+18

s 6 + 1.90e+3s 5 + 6.54e+6s 4 + 7.22e+9s 3 + 7.77e+12s 2

+ 3.12e+15s + 4.45e+17

Figure 5. - 6th order reduced order model for the
NASA Lewis 40-60 Inlet



Conclusions

The given physical lumping method of differencing proved to be
feasible for representing the dynamics of the NASA Lewis 40-60
inlet. An advantage of this differencing approach is that it
readily allows the study of nonlinear model reduction methods, as
the states are immediately available. This is not true of most
other CFD methods. Furthermore, physical lumping is more

intuitive. It is essentially a straight forward differencing

approach which requires less up-front calculation than the split

flux method presented in [I]. The resulting ROMs not only turned

out to be of smaller order but they also efficiently captured the

dynamics of the system. The Schur method of balancing proved to be

a good choice for a model reduction scheme resulting in a

substantial reduction in order from 123 to order 6 or smaller.

Depending on the intended use of the reduced order models, the 6th

order model appears practical for most purposes. The 4th order

model may be used if time delay information is not important.
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